Search results for "Poincaré–Steklov operator"

showing 6 items of 6 documents

Porous medium equation with absorption and a nonlinear boundary condition

2002

where is a bounded domain with smooth boundary, @=@ is the outer normal derivative, m ? 1; p; and q are positive parameters and u0 is in L∞( ). Problems of this form arise in mathematical models in a number of areas of science, for instance, in models for gas or :uid :ow in porous media [3] and for the spread of certain biological populations [13]. In the semilinear case (that is for m=1), there is an extensive literature about global existence and blow-up results for this type of problems, see among others, [5,9,16] and the literature therein. For the degenerate case (that is for m = 1), with a nonlinear boundary condition, local existence and uniqueness of weak solutions which are limit o…

Applied MathematicsMathematical analysisNeumann boundary conditionFree boundary problemNo-slip conditionBoundary (topology)UniquenessBoundary value problemAnalysisRobin boundary conditionPoincaré–Steklov operatorMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Finite element approximations of the wave equation with Dirichlet boundary data defined on a bounded domain in R2

2006

Dirichlet problemsymbols.namesakeDirichlet boundary conditionDirichlet's principleMathematical analysissymbolsMixed finite element methodBoundary value problemDirichlet's energyMixed boundary conditionPoincaré–Steklov operatorMathematics
researchProduct

Two theorems of N. Wiener for solutions of quasilinear elliptic equations

1985

Relatively little is known about boundary behavior of solutions of quasilinear elliptic partial differential equations as compared to that of harmonic functions. In this paper two results, which in the harmonic case are due to N. Wiener, are generalized to a nonlinear situation. Suppose that G is a bounded domain in R n. We consider functions u: G--~R which are free extremals of the variational integral

General Mathematics010102 general mathematicsMathematical analysisHarmonic (mathematics)01 natural sciencesParabolic partial differential equationPoincaré–Steklov operator010101 applied mathematicsNonlinear systemElliptic partial differential equationHarmonic functionLinear differential equationFree boundary problem0101 mathematicsMathematics
researchProduct

Regularization and finite element approximation of the wave equation with Dirichlet boundary data

1990

Mathematical analysisMixed boundary conditionMixed finite element methodDirichlet's energyBoundary knot methodPoincaré–Steklov operatorsymbols.namesakeDirichlet's principleDirichlet boundary conditionsymbolsGeneral Earth and Planetary SciencesBoundary value problemGeneral Environmental ScienceMathematicsBanach Center Publications
researchProduct

Lacunary bifurcation for operator equations and nonlinear boundary value problems on ℝN

1991

SynopsisWe consider nonlinear eigenvalue problems of the form Lu + F(u) = λu in a real Hilbert space, where L is a positive self-adjoint linear operator and F is a nonlinearity vanishing to higher order at u = 0. We suppose that there are gaps in the essential spectrum of L and use critical point theory for strongly indefinite functionals to derive conditions for the existence of non-zero solutions for λ belonging to such a gap, and for the bifurcation of such solutions from the line of trivial solutions at the boundary points of a gap. The abstract results are applied to the L2-theory of semilinear elliptic partial differential equations on ℝN. We obtain existence results for the general c…

Nonlinear systemElliptic partial differential equationGeneral MathematicsMathematical analysisEssential spectrumMathematicsofComputing_NUMERICALANALYSISBoundary value problemCompact operatorElliptic boundary value problemPoincaré–Steklov operatorMathematicsTrace operatorProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Strictly convergent algorithm for an elliptic equation with nonlocal and nonlinear boundary conditions

2012

The paper describes a formally strictly convergent algorithm for solving a class of elliptic problems with nonlinear and nonlocal boundary conditions, which arise in modeling of the steady-state conductive-radiative heat transfer processes. The proposed algorithm has two levels of iterations, where inner iterations by means of the damped Newton method solve an appropriate elliptic problem with nonlinear, but local boundary conditions, and outer iterations deal with nonlocal terms in boundary conditions.

conductive-radiative heat transferelliptic equationMathematical analysisMixed boundary conditionRobin boundary conditionPoincaré–Steklov operatorNonlinear systemElliptic curveNewton methodModeling and SimulationQA1-939Neumann boundary conditionFree boundary problemBoundary value problemAlgorithmMathematicsAnalysisMathematicsMathematical Modelling and Analysis
researchProduct